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Today’s Agenda

• Evolution of Maintenance and Driving 
Theory

– Traditional Bimodal Maintenance

– Reliability Centered Maintenance

– Condition Based Maintenance

– Performance Focused

• Three Case Studies

– Cables

– SF6 Breakers

– Transformer On-line Monitoring
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Traditional Maintenance

Benefits Drawbacks
Periodic inspection servicing is 
necessary

Time is poor predictor of wear

Acknowledgement that full 
equipment operating life is only 
possible if worn parts are 
replaced.

Overhauls create more problems 
than they solve

High cost

Manufacturers did not understand 
the operating environment
Reliability and availability were not 
being met
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RCM

“A structured process that identifies the effects of 

failures and defines the appropriate maintenance 
path for managing their impacts.   RCM identifies 
both the most technically and economic effective 
approach to maintenance .”
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RCM History
• Airlines

1965 MSG-1 (Maint. Steering Group)
1970 MSG-2
Experience

– DC 8
• 339 Scheduled Removal Tasks
• 7 Scheduled Removal Tasks

– 747
• 8 Scheduled Removal Tasks
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RCM History (cont.)

• Airline Observations:
– Maintenance needs to focus on system that have 

significant impact on safety or economics. 
– Hard time overhaul policies were ineffective.
– Management of maintenance was crucial.
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RCM History (cont.)

• US Navy 
– 1978 Contracted United Airlines

• US Electric Utilities - 80’s
– EPRI Sponsored Nuclear 1985-1987
– Fossil Fuel Plants 

• US Electric Utilities - 90’s
– Substations 1990
– T&D

• EDF and Others
– Nuclear Plants
– Transmission Substations
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RCM Task Selection

“The RCM task selection approach used to ensure that only 
applicable and cost effective tasks are selected to address 

the causes of critical equipment failure modes”

RCM Task Categories
– Inspection-Condition Monitoring-Predictive Maintenance
– Periodic

• Rework-Time Directed
• Discard-Time Directed

– Failure Finding
– Run to Failure
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Reliability Centered Maintenance

Benefits Drawbacks
Critical Functions Viewed as difficult and not applicable 

to power industry

Equipment and application 
specific

99.999% (1 hour of outage per year) 
reliability is difficult to understand

Greater insight into failure 
process

Living program forgotten

Eliminated ineffective tasks Did not set maintenance intervals
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Condition Based Maintenance

“Condition Based Maintenance accentuates the value of 
RCM task selection logic and emphasizes that more 
intrusive replacement and overhaul tasks only need to take 
place when measurable wear or aging occurs.”

“Condition Directed Tasks are initiated when deterioration 
has gone beyond a prescribed limit”
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Condition Based Maintenance

Benefits Drawbacks
Increased availability Data systems were may not be 

adequate.

Reduced costs Process management overlooked.

More frequent analysis of asset 
condition

No methodology for justifying 
increased monitoring
Increased back-office analysis



19

Overhaul

Safety Function

Failure
Cause

Criticality

Effects
Time

Aging Models

Sensors

Real Time Data

Predictions

CMCM

PMPM
Tr

ad
itio

na
l

Run to
Failure
Run to
Failure

Event

Failure
Finding
Failure
Finding

ConditionCondition

RCM

IMIM

PredictivePredictive

CBM

DiagnosticsDiagnostics
Proactive

Asset Asset 

Maintenance Evolution – PFM

Or
ga

ni
za

tio
n

Process

Data

Event
Failure
Finding
Failure
Finding

Run to
Failure
Run to
Failure

IMIM

PredictivePredictive

CMCM

PMPM
ConditionCondition

Asset Asset 
Tr

ad
itio

na
l RCM

CBM

DiagnosticsDiagnostics
Proactive

Performance Focused Maintenance



20

What is PFM?

PFM is a comprehensive maintenance strategy 
emphasizing the understanding of Failure Mechanisms, 
Measurement, Interval Optimization, Task Prioritization, 
Feedback and the use of Data.  PFM recognizes the need 
for process control
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What Maintenance is Included in PFM?

Maintenance includes all activities associated with 

preserving or restoring critical functions.  Typical 
maintenance activities include:

– Preventive Maintenance

– Condition Monitoring/Inspections

– Diagnostic Testing

– Integrated Monitoring

– Predictive Activities

– Hidden Failure Finding Tasks

– Condition Directed Corrective and Renewal Tasks

– Corrective Maintenance

– Pre-Emptive Replacement
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PFM 12 Step Methodology

Reconciliation and 
Program Development

Step 8-9

Implementation 
Documentation

Step 11- 12

Perform 
Failure Mode 

and Effect 
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(FMEA)

Steps 3-5

Aging Mechanisms

Step 6
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Task Selection and 
Interval Optimization

Step 7

Identify System Boundaries 
and Critical Functions

Steps 1-2

Measures, Metrics 
&KPIs

Step 10
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Understanding: 
The Aging Process
Failure Initiation Mechanisms

Bridging Business Issues and
Technical Requirements
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Task Interval Optimization-Weibull Age 
Modeling

F(t) = 1-e-[(t-t0)/η]β

– t0 = Guarantee 
Period

– η = 
Characteristic 
Life .. MTBF

– β = Shape factor

Failure Probability Distribution
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Failure Initiation Patterns
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Characteristics of PFM 
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Performance Focused Maintenance

Benefits Drawbacks
Increased availability and 
reliability

Requires quality data collection and 
storage processes

Reduced life-cycle costs Must be understood and supported 
by the highest management levels

Data collection fundamental part 
of the process
Integrated business and 
technology approach to 
maintenance
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Performance 
Focused 
Maintenance
Case Studies (3)
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Case I-15kV Distribution Cables
• Issues:

– Aging population-(four insulation systems)
– Inspection program that did not affect 

failure rates
– Complicated and time consuming 

replacement ranking system
– Ineffective condition assessment tasks 
– Poor asset data
– 0.4% replacement rate

• Drivers
– Performance Based Rates
– High replacement costs

• Key Considerations
– Design Improvements
– Mostly in conduit
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Equipment Group: Population by Age and 
Insulation Type
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Identify System Boundaries 
and Critical Functions

Steps 1-2
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FMEA:  Cables Perform Failure Mode and Affect 
Analysis (FMEA)

Steps 3-5

Dominant Failure 
modes are “Failure 

to Insulate and 
Failure to provide a 

ground plane”



33

Tree Examples - Failure to Insulate

#2 AWG HMW vintage cable which failed in Ridgecrest.
Water treeing more than 50% through the insulation

#2 AWG XLPE cable from Fullerton.  Water treeing more 
than 40% through the insulation.

Cable Insulation

Source: DAE, Improving the performance of underground cable. 
Sept 14, 2001

Water TreesCable Insulation

Aging Mechanism

Step 6

Resultant Strategy:

Pre-emptive Replacement
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Cable Unreliability

0

0.2

0.4

0.6

0.8

1

 yr(s) 10 yr(s) 20 yr(s) 30 yr(s) 40 yr(s) 50 yr(s) 60 yr(s)
Years after installation

Un
re

lia
bi

lit PILC
HMW
XLPE
TR-XLPE

Cable Insulation Failure Model

10% Limit



35

Pre-emptive Replacement Strategy – Age Limit 
(10% failure)

SAIDI + SAIFI IMPACTS
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Case II – SF6 Breaker Maintenance

• Issues:
– Extension of Oil Breaker 

Maintenance Philosophy
– Declining Reliability
– Increasing Maintenance 

Costs
– Increased Availability 

Required
– No CMMS
– Maintenance Behind 

Schedule
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10 Year Results

• Effective Knowledge Transfer

• Improve Data Collection

• Extended Maintenance Intervals 
(double) with Defendable Basis

• Additional PM Triggers-Age 
Exploration

• Reduction in Rework Activities-
Improved PM Effectiveness

• Increased Availability

• Improved Reliability

• Elimination of PM Backlog
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SF6 PFM Implementation Results

10 Year Analysis Period

SF6 Breakers
(69% of the total population)

More than 10,000 Inspections 
and Maintenance Tasks
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SF6 CIRCUIT BREAKERS
TYPE OF PROBLEMS DETECTED DURING MAINTENANCE ACTIVITIES
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Case III-Application of On-Line Monitors

• Issues:
– Aging Asset Population
– Recent Cascading 

Failure
– Push to Install New 

Monitoring Technology
– Poor Experience with 

Hydrogen Monitors
– Increased Insurance 

Rates
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Fleet Characteristics

• “Large” Power Transformers

• 220 KV to 115 or 66KV

• 120 to 280 MVA

• Single and Three Phase

• Average Age = 39 Years

• Max Age = 76 Years

• Replacement Costs $3M to $4M 
(on the pad)

• Population = 188
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Failure History (population = 188)

Failure Events
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Age Distribution

A-Bank Age Distribution
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Failures as a Function of Age

A Bank Failures
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Industry Reported Failure Distribution

Failure Distribution by Impacted System
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Utility Reported Failure and Trouble 
Distribution

Dielectric
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Typical Reliability Predictive Models
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Model Comparison Applied to Existing Fleet
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Failure Mechanisms
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Incipient Failure Pre-cursor Model
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On-line Monitoring Decision Model

• Failure Model
• Direct Costs

– Transformer
– Collateral Damage
– Fines

• Indirect Costs
– Commissions and Ratepayers
– Insurance
– Stress on other units
– Supply impacts

• True Risk Reduction
• Fleet Replacement Impacts
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Transformer Fleet Risk Exposure Profiles
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Extended Useful Life

Deferred Transformer Replacement
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Conclusions from PFM Approach:

Substantial benefit can be obtained from 
installation of multi-gas monitors across a 
large fleet of power transformers
– Improved transformer reliability
– Reduced failure impacts
– Realization of full transformer useful life
– Identification of units in urgent need of 

repair/replacement.
– Substantial reduction in overall 

transformer operating risks
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Future Trends in Maintenance

• Sharing of Failure and Trouble data
– Mode and Cause Level
– Demographics

• Application
• Type

– Population
• Age models vs. Failure Rate

• Full Asset Utilization
• Risk Reduction
• Key Performance Indicators

– Asset Family
– Maintenance Process
– Life Cycle Costs
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Open Discussion and Questions:

Need More Information?

john.skog@mtec2000.com

360.352.9977

2037 Berry St. NE

Olympia WA, 98506 USA
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