

Strategic Look at Transformer Online Monitoring

Business Case, Technology and Application

Tony Johnson-Southern California Edison Co. John Skog-Maintenance and Test Engineering LLC Study Sponsored by SCE's Research Department

(

Today's Objectives

Take a global view of transformer failure mechanisms

Provide a "business approach" to transformer on-line monitoring

Describe the technologies

Discuss implementation experiences at SCE

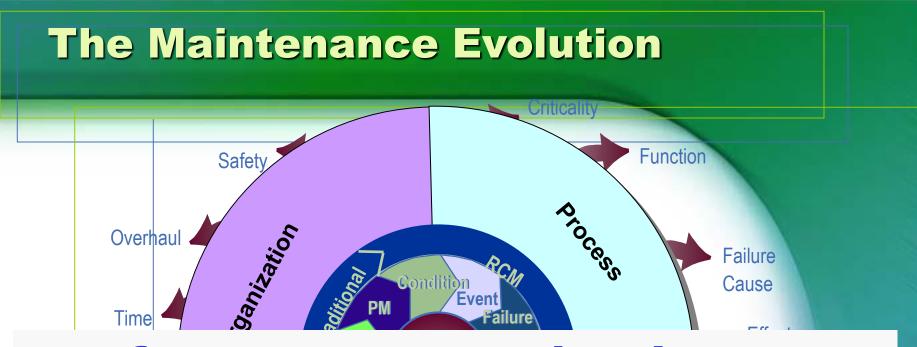
Our Backgrounds

Markov Tony Johnson-Sr. Engineer

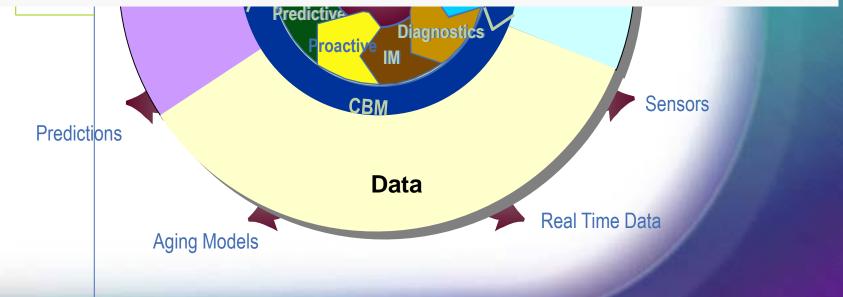
MSEE – Montana State University

15 years utility experience

- Herein Substation Automation Engineering
- 😚 Relay Test Technician Supervisor
- Project Manager Technology
 Development
- Senior Engineer Technology Integration


A Professional Activities

🖶 IEEE

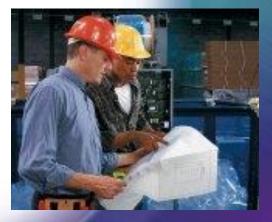


John Skog-Consultant

- MSEE Washington State University
- 20 years utility experience Management and Operations of:
 - ↔ Substations
 - Here System Operations
 - 🕅 Metering
 - ↔ System Protection
- Consulting 1978 to present with a focus on:
 - Haintenance Strategies
 - Herein Technology Initiatives
- Professional Activities
 - 🕀 Cigré
 - 🕀 EPRI
 - 🔂 Doble
 - 🖗 IEEE

Performance Focused Maintenance

What is Maintenance?


Maintenance include

with preserving or re

Typical maintenance

- ↔ Preventive Maintenance
- ☆ Condition Monitoring/Inspect
- 🖶 Diagnostic Testing
- Here and the second sec
- ☆ Condition Directed Corrective and Renewal Tasks
- ↔ Predictive Activities
- 🖶 Hidden Failure Finding
- ↔ Corrective Maintenance
- ↔ Pre-Emptive Replacement

On-line Monitors

associated

IS.

Transformer Asset Management Issues

Costly Asset

- Domestic Manufacturing is Limited
- Aging Fleet
- Difficult/Expensive to Remove from Service

- A High Reliability is Expected
- Improvements are Difficult to Capitalize

On-line Monitoring Opportunities

A In-service Transformers

- Improved reliability-reduction in catastrophic failures
- Extended operating life-longer return on initial capital investment
- Reduced risk
- \textcircledightarrow An ability to overload the transformer without significant loss of life

New Power Transformers

- R Reduced risk
- ↔ Capital Investment with rate base return

On-line Monitor Availability

- Bushing leakage current
- 🔺 Moisture in oil
- 🛦 Thermal
- 🔺 Hydrogen
- Total combustible gas
- 🛦 Multi-gas
- Cooling System

Today's focus: Multi-gas Monitors

Business Case Approach

What is a Business Case?

- A structured proposal for business improvement that functions as a decision package for organizational decision-makers. A business case includes an analysis of business process performance and associated needs or problems, proposed alternative solutions, assumptions, constraints, and a risk-adjusted cost-benefit
- analysis.

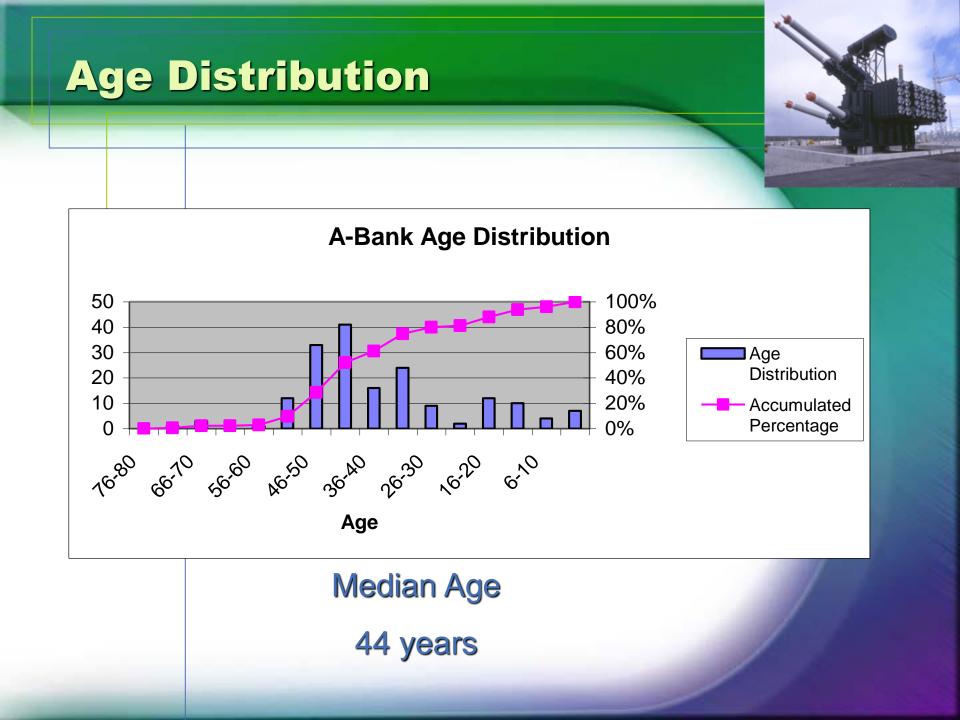
Business Case Fatal Flaws

- **A** Fatal Flaw One: Lack of flexibility
- Fatal Flaw Two: Theoretical, rather than practical
- **Fatal Flaw Three: Information overload**
- Fatal Flaw Four: No step-by-step implementation guides
- Fatal Flaw Five: Overlooked critical factors
- **A Fatal Flaw Six: Too complex**

12 Elements of a Business Case

- 1. A brief, compelling, service-oriented problem statement
- 2. A mission statement or vision of the future that addresses the problem
- 3. A description of the specific objectives to be achieved
- 4. A description and rationale for your preferred approach
- 5. Economic analysis/ROI and a statement of the benefits that address the concerns of all relevant stakeholders
- 6. Measures for gauging improved performance or progress toward each objective
- 7. A statement of the likely risks of your initiative and how they will addressed
- 8. A basic plan of work with a timeline and key milestones
- 9. A project management plan and names and roles of key managers
- 10. Alternatives considered and how they would or would not work
- 11. Cost estimates and potential sources of funding
- 12. Opposing arguments and your responses to them

Specific Business Case Application


- **Large**" Power Transformers
- 220 KV to 115 or 66KV
- 🔺 12 to 280 MVA
- Single and Three Phase
- ▲ Average Age = 39 Years
- ▲ Max Age = 76 Years
- A Replacement Costs \$3M to \$4M (on the pad)
- Population = 188

1. Problem Statement

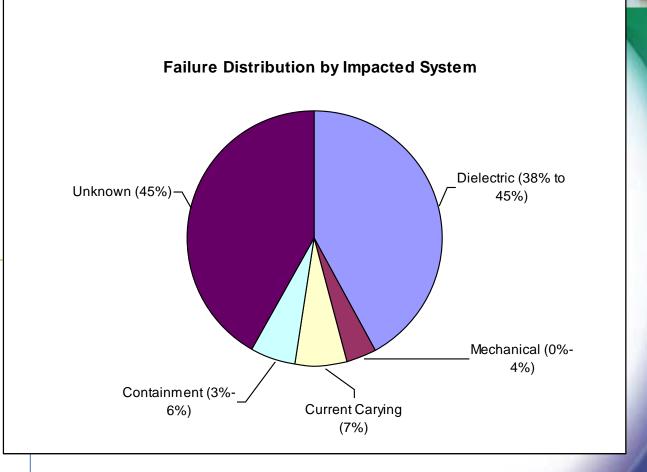
The "A-Bank" population is nearing their expected operating end-of-life. **Continued operation will** increase the risk of failure but delays major expenditures of capital.

2. Mission or Vision Statement

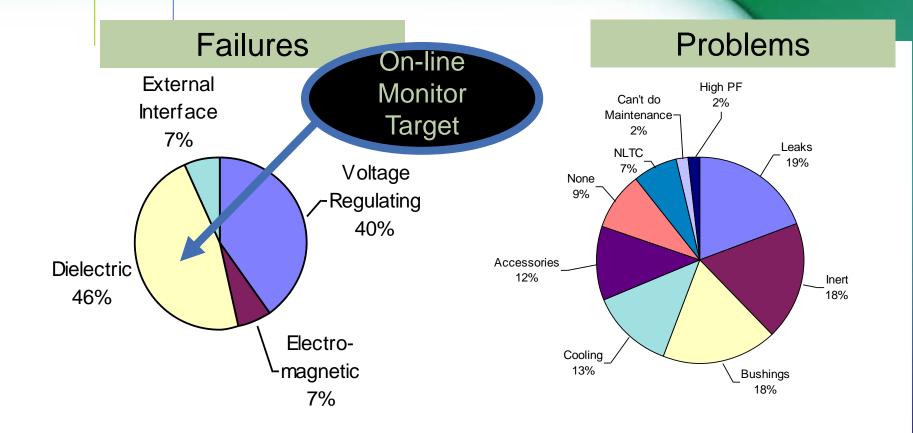
▲ Installation of an on-line DGA system will allow SCE to extend and maximize the operating life of it's "A-Bank" fleet and at the same time reduce the risk of inservice failure.

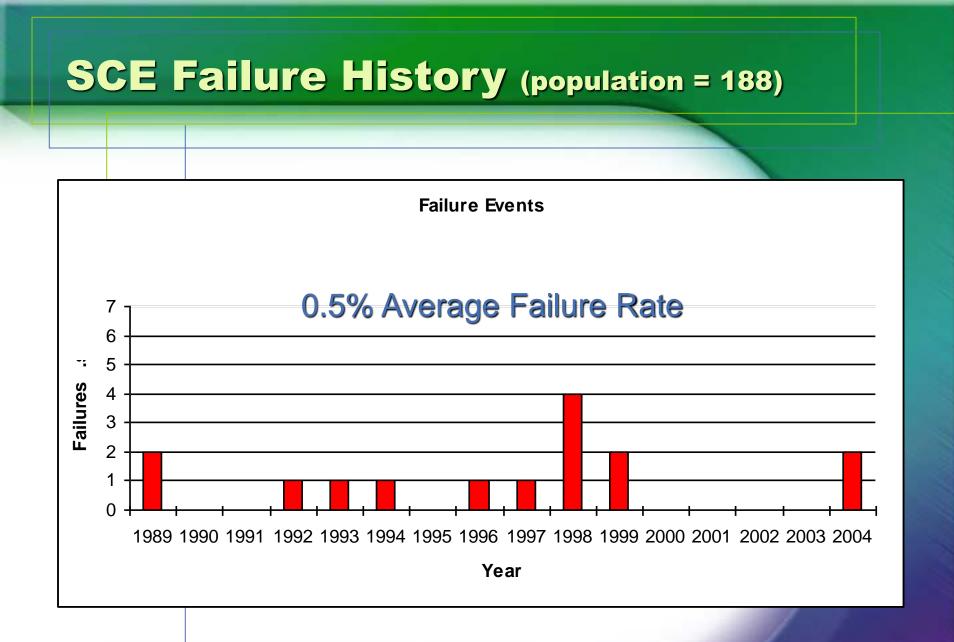
3. Specific Program Objectives

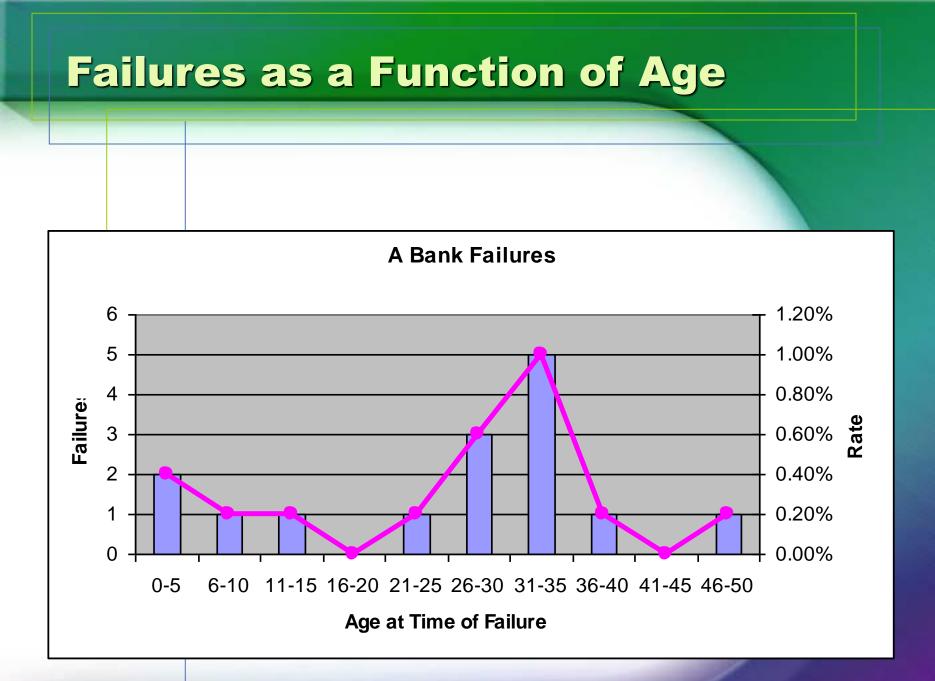
- Reduce In-service failures to below 0.25% annually
- Provide relevant condition assessment data to key stakeholders
- Implement a strategic replacement program
 - Rank the health of each transformer
 - Provide input to system planning
- Streamline the data collection, accountability and response processes
- Develop a solid business rationale for applying on-line monitoring techniques to other equipment families

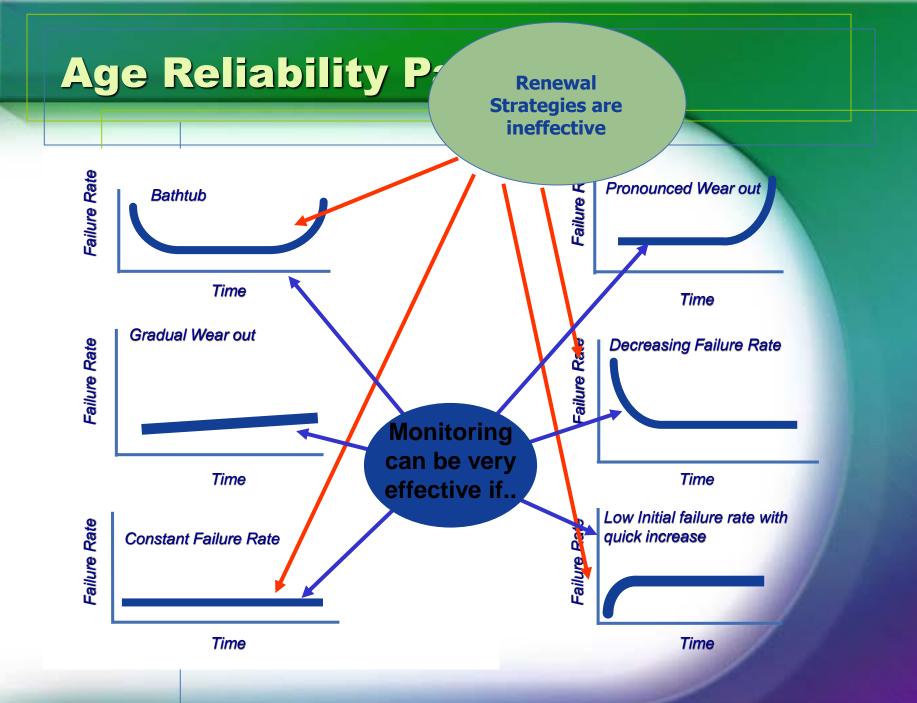

4. Rationale For The Preferred Approach

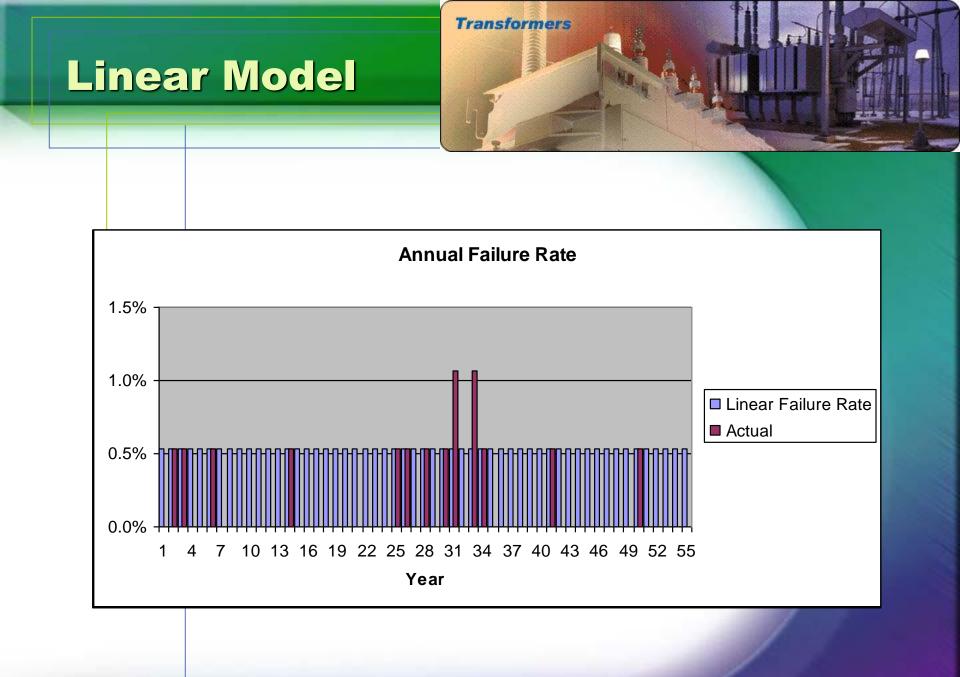
- Periodic DGA has been universally accepted as the single most effective condition assessment tool for power transformers
- Failure mechanisms can be fast
- Asset replacement costs exceed \$1M/unit
- Delivery times for replacement units can exceed 1 year
- Back-to-back failures have occurred

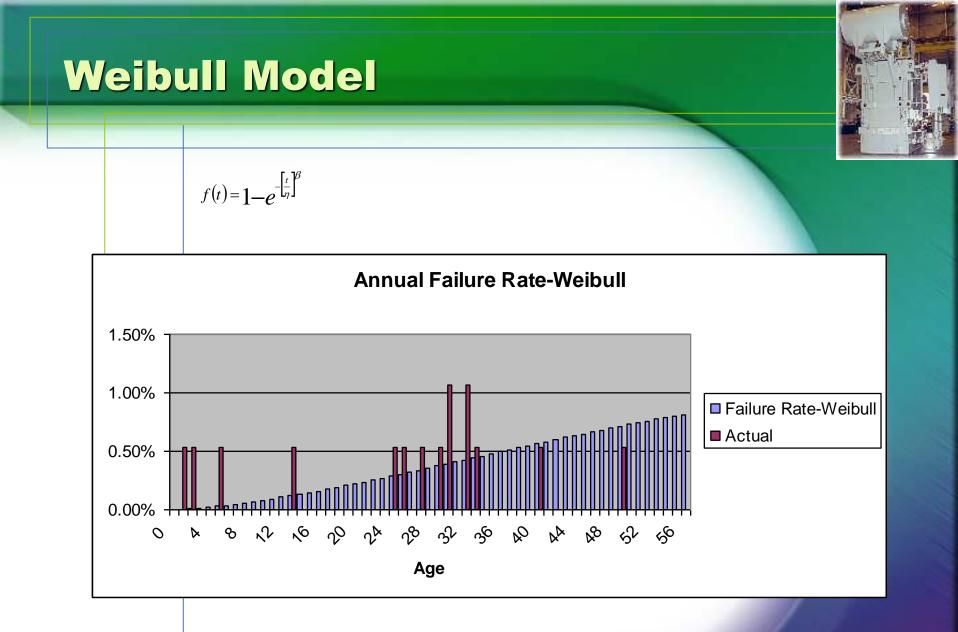

How Do Transformers Fail?

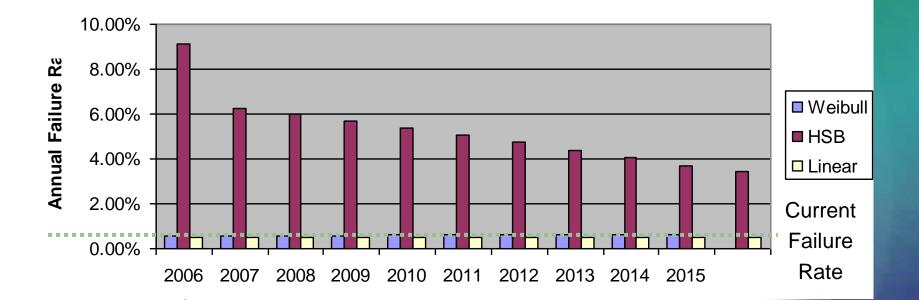

Building a failure model

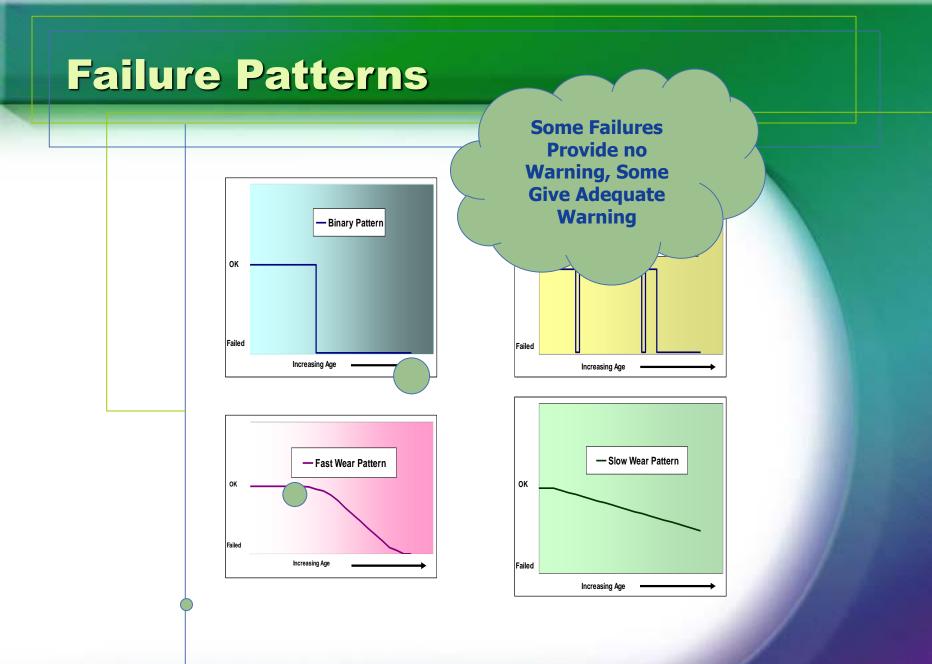

Industry Reported Failure Distribution

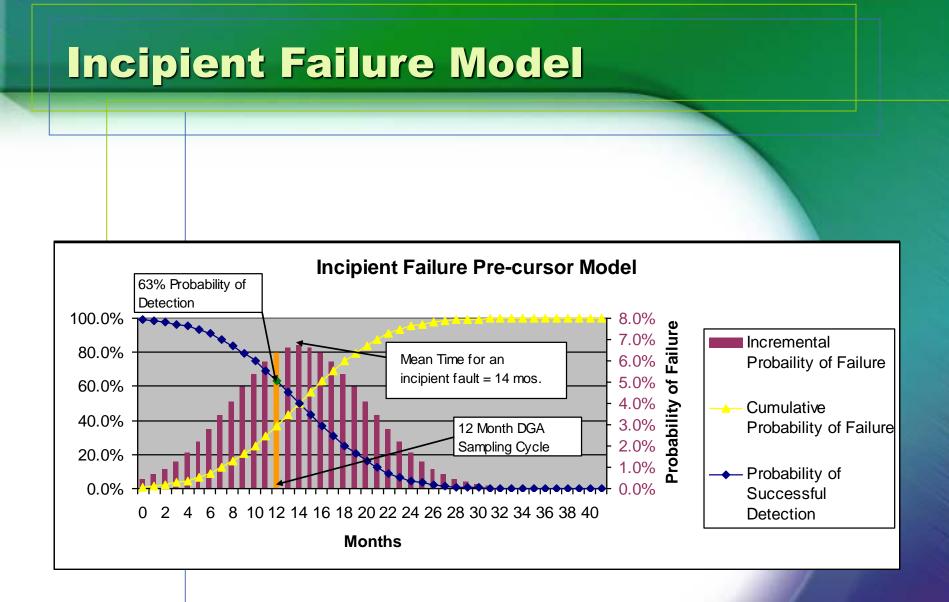



SCE Reported Failure and Trouble Distribution








HSB Prediction Model $f(t) = A + \alpha e^{\beta t}$ **Annual Failure Rate** 60.0% 50.0% 40.0% ■ HSB Failure Model 30.0% Actual 20.0% 10.0% 0.0% + 15 18 0 ი 7 З Q 2

Model Comparison Applied to Existing Fleet

Risk Analysis-Criticality

probability

		Susceptibility	Risk based failure consequence class			
Susceptibility class	High Very susceptible to failure Asset age, non-redundancy, seashore Medium Susceptible to failure under normal conditions, non-meshed grid		critical	vital	vital	
			non-critical	critical	vital	
Su	Low Susceptible to failures under severe conditions, meshed-grid, redundancy		non-critical	non-critical	critical	
Consequence category	Social	Health & safety	No injury	Medical treatment	Physical & long term effects	
		Public image & license	No impact	Negative PR Regulator discussions	Loss of clients Regulator effects	
		Environment	No effect	Local effect	Possible hazard	
u u	Technical		No effect	Lower reliability	Aging	
-	Economical		No damage	Damage 1 to 5 M	Damage > 5M	
	Societal		Rural area	City (centre)	Heavy industries	
	Conseque		low	medium	high	

consequence

Criticality Based Maintenance Response

risk

RISK/CONDITION BASED, ASSET DIRECTED, ACTIVITY MATRIX

ss		continue	intensify	investigate		
c a	vital	maintenance	measurements	revision or		
မ		concept	maintenance	replacement		
failure consequence class		consequences	continue	investigate		
bas	critical	maintenance	maintenance	revision or		
ü		decrease	concept	replacement		
้อ	non-critical	do nothing? apply CM?	consequences	continue		
i i i			maintenance	maintenance		
fe		apply CM?	decrease	concept		
F	based upon FMECA	good	medium	bad		
tion	directed	Condition 5	Condition 3	Condition 1		

5	bused upon 1 MECA	good	mealam	Duu
nditio	directed	Condition 5	Condition 3	Condition 1
condition class	condition	CM history	CM history:	CM history:
Ŭ	measurements	< 1/year	< 3 /year	> 3 /year

performance

Winding Failure Risk & Criticality

Susceptibility		Risk based failure consequence rating			
	High Very susceptible to failure Asset Age, non-redundancy, environment		Critical	Vital	Viter
Susceptibility Ranking	Medium Susceptible to failure under normal conditions		Non-Critical	Critical	Vital
	Low Susceptible to failure under severe conditions, redundancy		Non-Critical	Non-Critical	Critical
Consequence Category		Health and Safety	No Injury	Medical Treatment	Physical and Long term effects
	Social	Public Image	No Impact	Negative PR Regulator Discussions	Loss of Customers Regulatory effect
		Environment	No Effect	Local Effect	Possible Hazard
	Technica		No Effect	Lower Reliability	Aging
	Economi	c	No Damage	Damage \$1M to \$5M	Damage > \$5M
	Societal		Rural Area	Urban	Industrial

Winding Failure Maintenance Response

nence	Vital	Continue current maintenance practice	Intensify maintenance and measurements	Revise Maintenance Program or Replace Asset
Failure Consequence Ranking	Critical	Consequence control	Continue current maintenance practice	Intersify mainterance and measurements
Failur	Non-Critical	Decrease PM or CM only	Consequence control	Continue current maintenance practice
c		Good	Medium	Bad
Condition Rating	Based on Technical Analysis	Condition 5	Condition 3	Condition 1
		> 75% remaining life	40% to75% remaining life	<40% remaining life

5. Expected Benefits

Positive ROI

Fewer in-service failures
Maximized utilization

Reduced risk during emergency overload

Planned replacement program

 \bigotimes

Financial and Risk Analysis

Decision Model Building Blocks

🛦 Failure Model

Direct Costs

☆ Transformer
 ☆ Collateral Damage
 ☆ Fines

Indirect Costs

- ☆ Commissions and Ratepayers
- ☆ Insurance
- ↔ Stress on other units
- Supply impacts
- **A True Risk Reduction**

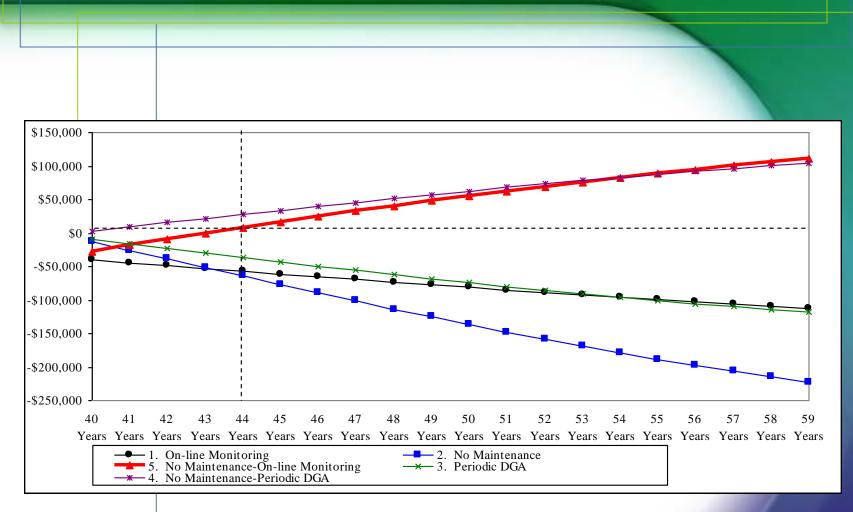
A Fleet Replacement Impacts

Or	ı-lin	e Monit	or	Se	lectio	n				
Input Parameters	s for On-line I Analysis	Monitoring Financial	units				Transformer Main Insulation System	Bushing	LTC	Electro- Magnetic
				Т	ransformer Data		-			
	Transformer	System to be Analyzed		Trans	sformer Main Insulation S	System	-			
				т	ransformer Data		-			
		Current Age	years		39 Year(s)		39 Year(s)	39 Year(s)	39 Year(s)	39 Year(s)
		Replacement Cost	\$	<u> </u>	\$3,200,000		\$3,200,000	\$3,200,000	\$3,200,000	\$3,200,000
		former if failure was not % of replacement cost)	%		25%		25%	1%	5%	5%

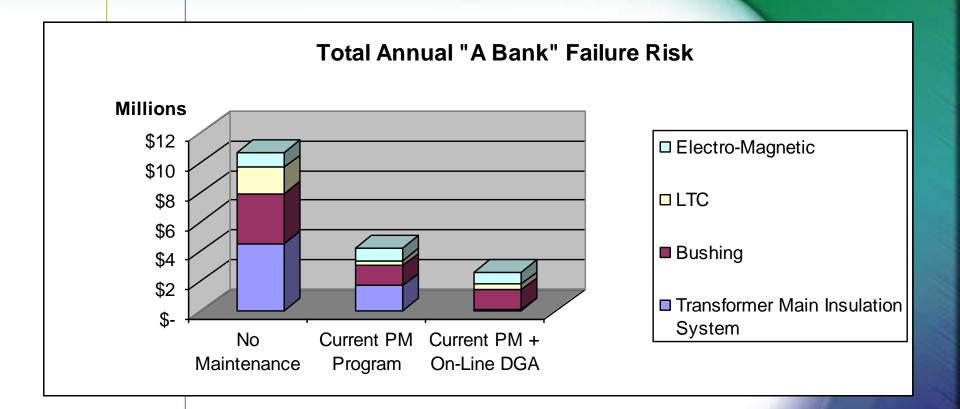
Reliability Inputs:

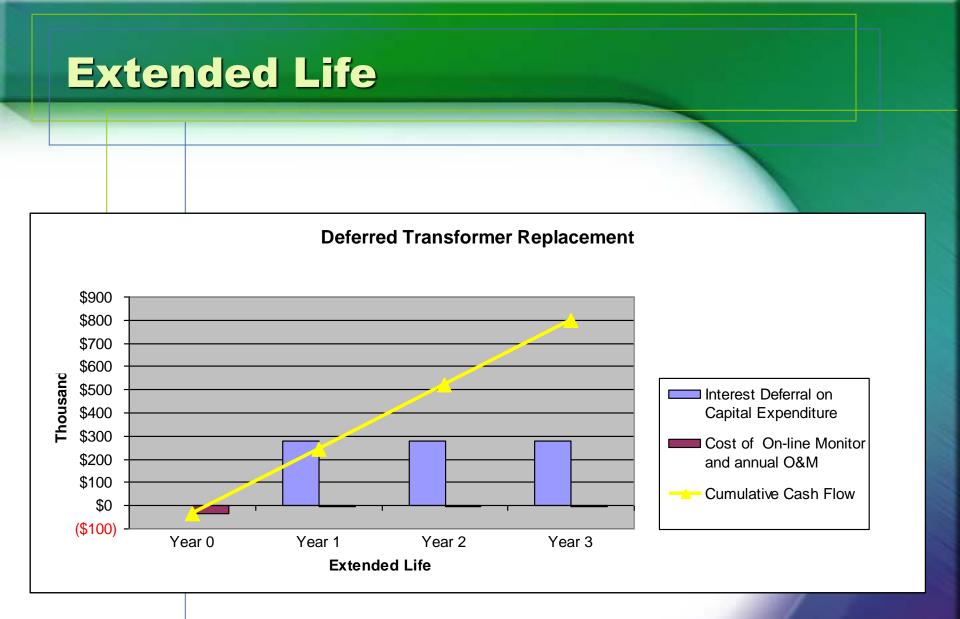
		Reliability Data	Transformer Main Insulation System	Bushing	LTC	Electro- Magnetic
Reliability Model		Weibull	Weibull	Weibull	Linear	Linear
ability of transformer failure-Linear Failure Rate-No PM	%	0.53%	0.53%	0.50%	0.50%	0.20%
Random failures-HSB Model constant Parameter	%	0.5%	0.50%	0.00%	0.00%	0.00%
bability of transformer failure-HSB Model "A" Parameter	Constant	 0.00007	0.00007	0.00007	0.00007	0.00007
ability of transformer failure-HSB Model-Time Constant	Constant	0.17619	0.17619	0.01762	0.01762	0.01762
Weibull Model-Characteristic Life-No PM	Eta	101	101.00	62.10	20.00	101.00
Weibull Model-Shape Factor-No PM	Beta	2.473	2.473	5.295	1.000	1.000
Mean Incipient Failure Time	Months	14 Month(s)	14	24	6	24
Standard Deviation for Incipient Failure	Months	6 Month(s)	6	6	2	2
			Transformer Main Insulation System	Bushing	LTC	Electro- Magnetic
Unplanned failure rate reduction with Normal PM	%	63.1%	63.06%	60.00%	80.00%	20.00%
Jnplanned failure rate reduction with On-line Monitoring	%	99.02%	99.02%	95.00%	90.00%	30.00%
obability of major transformer failure being catastrophic	%	90.0%	90.00%	30.00%	50.00%	75.00%
ity that a catastrophic failure includes collateral damage	%	40%	40.00%	25.00%	20.00%	40.00%
Total Probability of Failure in Year 1	1	0.57%	·			
Total Probability of Failure in Year 2	2	0.60%				

Impacts:


		Failure Impacts Transformer Main Bushing Insulation System				LTC	Electro- Magnetic
Outage time due to catastrophic failure, with collateral damage	days	10 Day(s)		10 Day(s)	1 Day(s)	10 Day(s)	10 Day(s)
Outage time due to catastrophic failure, without collateral damage	days	5 Day(s)		5 Day(s)	1 Day(s)	1 Day(s)	1 Day(s)
Outage time due to non-catastrophic failure, unplanned transformer repair	days	1 Day(s)		1 Day(s)	0 Day(s)	0 Day(s)	0 Day(s)
Estimated collateral damage cost to other equipment	\$	\$500,000		\$500,000	\$5,000	\$0	\$0
Estimated environmental cleanup cost with collateral damage	\$	\$500,000		\$500,000	\$0	\$100,000	\$0
Estimated environmental cleanup cost without collateral damage	\$	\$50,000		\$50,000	\$0	\$10,000	\$0
Estimated customer claims cost	\$	\$100,000		\$100,000	\$100,000	\$100,000	\$100,000
Estimated PR and damage control (cleanup) costs	\$	\$50,000		\$50,000	\$50,000	\$50,000	\$50,000
PUC Penalty for Power Interruption	\$	\$0		\$0	\$0	\$0	\$0
	i	Insurance					
Include insurance reimbursement?	Yes/No	No		No	No	No	No
Baseline insurance deductible	\$	\$4,000,000		\$4,000,000	\$4,000,000	\$4,000,000	\$4,000,000
Additional insurance deductible (when baseline is exceeded)	%	0%		0%	0%	0%	0%
		ration and Power Co	ontracts		1	1	1
Price of replacement power	\$/MWh	\$28.00		\$28.00	\$28.00	\$28.00	\$28.00
Variable costs associated with production of power (dispatch cost)	\$/MWh	\$12.00		\$12.00	\$12.00	\$12.00	\$12.00
Net marginal cost of replacement power (lost margin)	\$/MWh	\$16.00					
Purchase power required as a result of failure	MW	0 MW		0	0 0) 0	0 0

Maintenan	ce a	nd Rep	air:			
		Repair	Transformer Main Insulation System	Bushing	LTC	Electro- Magnetic
Outage time required for a planned repai	r days	10 Day(s)	10 Day(s)	0 Day(s)	10 Day(s)	10 Day(s)
Extra days of useful life added by proactively "nursing a transformer to repa	2//60	90 Day(s)	90 Day(s)	0 Day(s)	0 Day(s)	0 Day(s)
		rrent Maintenance Progra				
	Cu	rrent Maintenance Progra	<u>un</u>			
PM Program	n Name	DGA	DGA	PF Test	Internal Inspect	SFRA
Current PM Interva	al Months	12 Month(s)	12 Month(s)	48 Month(s)	48 Month(s)	48 Month(s)
Cost Per PM Task (include all overheads) \$	\$250	\$250	\$1,000	\$2,000	\$1,000
Current average annual PM Cos	t \$/Year	\$250	\$2,000	\$250	\$500	\$500
Expected decrease in annual PM costs due to On-line Monitoring	x	\$0	\$0	\$500	\$0	\$0
Current PM System Capital Cos	st \$	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000


Financial:						
			Transformer			
		Financial	Main Insulation System	Bushing	LTC	Electro- Magnetic
Cost Rate-Debt	%	7.5%				
Cost Rate-Equity	%	10.0%				
Percent of Financing-Debt	%	50.0%				
Percent of Financing-Equity	%	50.0%				
NPV discount rate	%	8.75%				
Weighted Average Cost of Capital (WACC)	%	8.75%				
Estimated IRR (Guess used to initialize the calculation)	%	35.0%				
Federal Tax Rate	%	35.0%				
Inflation Rate	%	3.0%				
Book Depreciation Life	Years	10 Year(s)				
Tax Depreciation Life	Years	5 Year(s)				
Capital Closed to Plant	Year	Year 1				
Regulated Investment	(Yes/No)	Yes				


Cost:								
		Monit	oring Hardwa	e	Transformer Main Insulation System	Bushing	LTC	Electro- Magnetic
Monitoring System Capital Cost	\$ \$		\$30,000		\$30,000	\$25,000	\$15,000	\$15,000
Monitoring System Installation fees	\$		\$4,000		\$4,000	\$3,000	\$6,000	\$4,000
Monitoring System Operational Costs	\$/yr		\$3,000		\$3,000	\$3,000	\$3,000	\$3,000
Outsoure Monitoring	(Yes/No)		No				1	T
Monitoring System Service Fees	\$/yr		\$0		\$1,500	\$1,500	\$1,500	\$1,500
Monitoring Systems Required			1		1	1	1	1

Cumulative Cash Flow

Transformer Fleet Risk Exposure Profiles

6. Performance and Progress Measures

- Budgetary acceptance
- Technology selection
- Communication strategy
- **Data storage architecture**
- Response and accountability plan
- Equipment installation
- **Key performance indicators (KPI)**

7. Risks And Ways To Address Them

Technology obsolescence
 Through-faults and lightning
 High installation cost
 Sensor failure/calibration error
 Communication failure
 Response latency

Technology Obsolescence

DGA has a 30+ yr. record

Improvements are expected but won't significantly reduce risk

A Hardware can be redeployed

Through-faults and Lightning

Design/genetic root

A different solution set reduces impact but may only slow down the failure mechanism

Odds of detecting an incipient fault are still improved

High Installation Cost

Delay installation at high cost sites

Implement a lower cost communication solution

Sensor Failure/Calibration Error Communication Failure

Perform periodic DGA sample

Self Diagnostics

Monitor Communication Link

Subscribe to monitoring service

Response Latency

On-line monitoring response times are still better than other condition assessment approaches.

Risks addressed by the SCE Business Case

- Is On-line Monitoring Technically Effective?
- Is On-line Monitoring Economically Effective?
- Does On-line Monitoring Effectively Reduce the Risk of Failure?
- A Can SCE Adequately Manage the Data?

8. Timeline (Optimistic)

- Month 1&2-Business case development
- Month 3-Technology assessment and selection
- Month 3-5 Budgetary development and acceptance
- O Month 6&7 Planning
- Month 8&9-Station Design
- Month 10 Installation
- Month 8&10-IT integration and testing
- Month 11&12-Operationalization

9. Project Management

- Technology Selection
- **A** Installation
- Communications
- **IT integration**
- A Operations/Process Control

10. Alternatives

 Increased Sampling Frequency
 Equipment Retirement
 Run-to-failure

11. Cost Estimates

Project
Management
management
Hardware
Communication
Installation
IT Integration
Annual O&M

12. Opposing Arguments

 Periodic DGA has served the utility very well
 Failure rates are currently quite low

Current design is fault tolerant
Industry acceptance

Business Case Conclusions:

Substantial benefit can be obtained from installation of multi-gas monitors across a large fleet of power transformers

- Horizonte transformer reliability
- ☆ Reduced failure impacts
- Realization of full transformer useful life
- Hentification of units in urgent need of repair/replacement.
- Substantial reduction in overall transformer operating risks

SCE Application and Experience

 \bigoplus

Baseline Monitoring

Transformer Loading

Amps

↔ Watts

Low side Voltage

Main Tank Temperature
LTC Tank Temperature

Fault Gases

Indication
Partial Discharge, Heating, Arcing
"Hot Metal" gases
Arcing
Cellulose Insulation Degradation

The Technologies (greater depth)

 Hydrogen (or Single Reading Devices)
 Multi-gas single
 Multi-gas dual

Single Reading Devices

Single reading devices

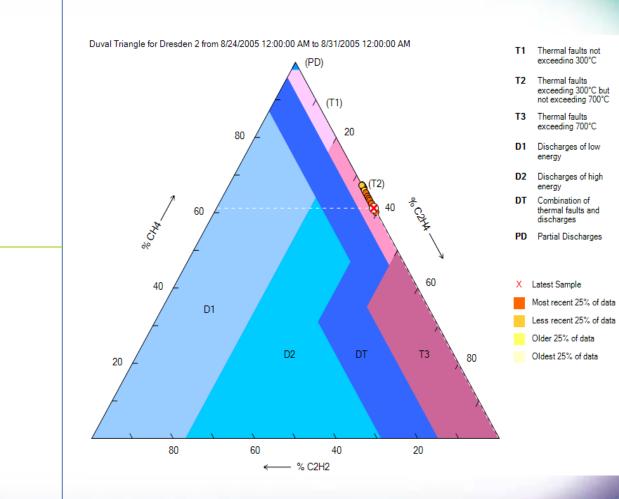
 Several units are on the market
 The reading is based primarily on Hydrogen.

Description Lower cost than Multi-gas units

Can not be used for remote diagnostics, primarily used as an indicator to take a manual DGA sample.

Multi-Gas Single Tank Application

This application installs an on-line multi-gas unit on the transformer main tank.


A This application is on what the study was based.

Multi-Gas Dual Tank Application

This application installs an on-line multi-gas unit on both the main tank and the LTC.

- \textcircled This would also give an indication of an issue with the LTC.
- Business case did not include an evaluation of this option.
- Standards for interpretation need to be developed.

Industry Case Studies (Omitted)

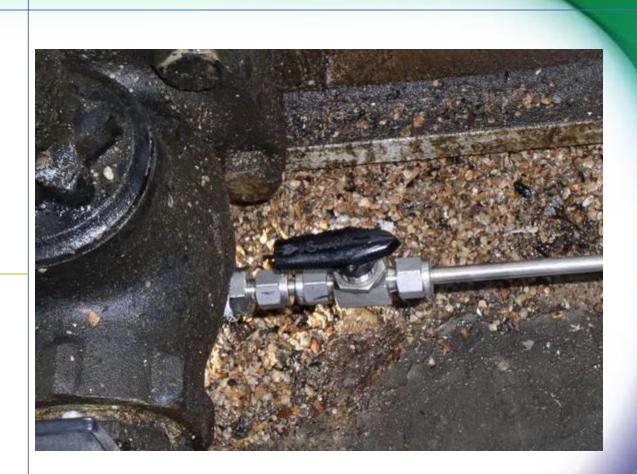
SCE Strategy

Enhance Existing Annual Program Where Beneficial

Provided Detail Action Requirements Upon Transition to Next Higher Level of Alert

Utilize Existing Communication and Notification Platforms Where Available

Provide Action Requirements for the Operations Department



Installation: Top valve

Installation: Bottom Valve

Installation: Side View

Installation: Communications

Each Transformer bank will have a fiber optic patch panel.

Individual units will be connected via fiber to the patch panel.

Communication Challenges

The last 1000 feet"
 Use of SCADA
 Security
 Other issues

Communication

From Transformer Bank to Station Control Room: SCE Standard is Fiber Optic Communication

Data will be collected by SCE's Energy Management System and Stored in our Historian

Data Management

 Data is Worthless
 Information is needed
 Data Historian has tools available to convert the data into INFORMATION.

Application Experience

In the past SCE has used several On-Line DGA units to monitor banks at risk.

- This has required SCE to establish a person responsible to "call" into the unit, collect and analyze the data.
- This process is not sustainable as the technology becomes more wide spread

Application Experience Cont.

Pilot at Viejo Substation Collected All Bank On-Line Data into the EMS Historian.

This provided the platform to convert the data to information.

Annual DGA Program

SCE has a well defined Annual DGA program that provides significant value.

- Pre-defined criteria levels
- Pre-defined actions at each level
- Program was developed and maintained by SCE's in-house experts

Annual DGA Action Condition: Normal

Condition: Normal

- Action No additional action required.
- Example Comment "Continue Normal Test Schedule"

Annual DGA Action Condition: Caution

Condition: Caution

- ☆ Action Re-test in an indicated interval
- ↔ Example Comment "Sample in 3 months"
- Contact appropriate Maintenance Manager for area regarding transformer condition.
- Identify rate of change for the identified gasses, if the positive rate of change is less than 20% for 2 test cycles then the condition code will return to Normal.
- For Second test of Caution, Warning, and Critical classifications a 6 part test should be included, unless one has been performed in the last year.

Annual DGA Action Condition: Warning

Condition: Warning

- ☆ Action Re-test in an indicated interval
- Example Comment "Sample within 30 days"
- Contact Technical Specialist for further actions required.
- Contact appropriate Maintenance Manager for area regarding transformer condition.
- Develop Action plan for continued transformer testing and operation.
- Hentify rate of change for the identified gasses, if the positive rate of change is less than 20% for a total of 4 test cycles, then the condition code will return to Caution.
- For Second test of Caution, Warning, and Critical classifications a 6 part test should be included, unless one has been performed in the last year.

Annual DGA Action Condition: Critical

Condition: Critical

- ☆ Action Re-test in an indicated interval
- ☆ Example Comment "Sample within 7 days"
- \Leftrightarrow Contact Technical Specialist for further actions required.
- Develop Action plan for continued transformer testing and operation.
- Evaluate need for additional on-line monitoring equipment.
- Contact appropriate Maintenance Manager for area regarding transformer condition.
- ☆ Identify rate of change for the identified gasses, if the positive rate of change is less than 20% for a total of 8 test cycles, then the condition code will return to Warning.
- If on-line DGA equipment is installed and the values of the gas reach the critical state, the bank should be cleared or at least load decreased, and SC&M notified for immediate action.

DGA Program Revision Due to On-Line DGA Monitoring

Condition: Normal

No Annual DGA Required

Condition: Caution

DGA Required upon transition into state.

Condition: Warning

DGA Required upon transition into state.

Develop action plan to identify and correct cause of gas generation

DGA Program Revision Due to On-Line DGA Monitoring

Condition: Critical

O On Transition in State:

- DGA sample required to confirm
- De-energize bank until confirmation is available
- Develop action plan for bank

↔ For Continued Operations

- Revise analog set points for operations to clear alarm but, maintain sensitivity to further issues that may arise
- Clearly identify any operating restrictions on bank until repair/replacement is available.

SCE Program Update

Technical Review Council approved on-line monitoring for all new projects (500kV and 220kV)

Once funding is identified, retrofit program will be identified and implemented

SCE Standard Approach to Monitoring

Continue Monitoring:

- \bigotimes Amps
- ↔ Watts
- 🔂 Volt
- Temp (Main and LTC)
- Main Tank 8 Gas On-line Monitoring

LTC 8 Gas On-line Monitoring (when available)

Conclusions:

- On-line DGA is both technically and economically effective for larger/critical units
- A On-line DGA can be applied to smaller units
- Increased sampling frequency is justified on other units
- A Other failure modes must not be neglected

More Information

(

 \bigoplus

John Skog Tony Johnson

360.352.9977 626.302.8122