Maintenance and Reliability – Theory

John E. Skog P.E. WGA3-06 Tutorial

June 2006

Today's Agenda

- Evolution of Maintenance and Driving Theory
 - Traditional Bimodal Maintenance
 - Reliability Centered Maintenance
 - Condition Based Maintenance
 - Performance Focused
- Three Case Studies
 - Cables
 - SF₆ Breakers
 - Transformer On-line Monitoring

Characteristics of Traditional Maintenance

Traditional Maintenance

Benefits	Drawbacks
Periodic inspection servicing is necessary	Time is poor predictor of wear
Acknowledgement that full equipment operating life is only possible if worn parts are replaced.	Overhauls create more problems than they solve
	High cost
	Manufacturers did not understand the operating environment
	Reliability and availability were not being met

Maintenance Evolution – RCM

RCM

"A structured process that identifies the effects of failures and defines the appropriate maintenance path for managing their impacts. <u>RCM identifies</u> <u>both the most technically and economic effective</u> <u>approach to maintenance</u>."

RCM History

- Airlines
 - 1965 MSG-1 (Maint. Steering Group)
 - 1970 MSG-2
 - Experience
 - DC 8
 - 339 Scheduled Removal Tasks
 - 7 Scheduled Removal Tasks
 - 747
 - 8 Scheduled Removal Tasks

RCM History (cont.)

- Airline Observations:
 - Maintenance needs to focus on system that have significant impact on safety or economics.
 - Hard time overhaul policies were ineffective.
 - Management of maintenance was crucial.

RCM History (cont.)

- US Navy
 - 1978 Contracted United Airlines
- US Electric Utilities 80's
 - EPRI Sponsored Nuclear 1985-1987
 - Fossil Fuel Plants
- US Electric Utilities 90's
 - Substations 1990
 - T&D
- EDF and Others
 - Nuclear Plants
 - Transmission Substations

RCM Task Selection

The RCM task selection approach used to ensure that only applicable and cost effective tasks are selected to address the causes of critical equipment failure modes"

RCM Task Categories

- Inspection-Condition Monitoring-Predictive Maintenance
- Periodic
 - Rework-Time Directed
 - Discard-Time Directed
- Failure Finding
 - Run to Failure

Simplified Task Selection Logic

Characteristics of Reliability Centered Maintenance

Reliability Centered Maintenance

Benefits	Drawbacks
Critical Functions	Viewed as difficult and not applicable to power industry
Equipment and application specific	99.999% (1 hour of outage per year) reliability is difficult to understand
Greater insight into failure process	Living program forgotten
Eliminated ineffective tasks	Did not set maintenance intervals

Maintenance Evolution – CBM

Condition Based Maintenance

"Condition Based Maintenance accentuates the value of RCM task selection logic and emphasizes that more intrusive replacement and overhaul tasks only need to take place when measurable wear or aging occurs."

"Condition Directed Tasks are initiated when deterioration has gone beyond a prescribed limit"

Characteristics of CBM

Condition Based Maintenance

Benefits	Drawbacks
Increased availability	Data systems were may not be adequate.
Reduced costs	Process management overlooked.
More frequent analysis of asset condition	No methodology for justifying increased monitoring
	Increased back-office analysis

Maintenance Evolution – PFM

Performance Focused Maintenance

What is **PFM**?

PFM is a comprehensive maintenance strategy emphasizing the understanding of Failure Mechanisms, Measurement, Interval Optimization, Task Prioritization, Feedback and the use of Data. PFM recognizes the need for process control

What Maintenance is Included in PFM?

Maintenance includes all activities associated with preserving or restoring critical <u>functions</u>. Typical maintenance activities include:

- Preventive Maintenance
- Condition Monitoring/Inspections
- Diagnostic Testing
- Integrated Monitoring
- Predictive Activities
- Hidden Failure Finding Tasks
- Condition Directed Corrective and Renewal Tasks
- Corrective Maintenance
- Pre-Emptive Replacement

PFM 12 Step Methodology

Bridging Business Issues and Technical Requirements

Understanding: The Aging Process Failure Initiation Mechanisms

Task Interval Optimization-Weibull Age Modeling

$F(t) = 1 - e^{-[(t-t_0)/\eta]^{\beta}}$ $-t_0 = Guarantee$ Period

 $-\eta =$ Charactetotic Life .. MTBF $-\beta =$ Shape factor

2%

0%

Characteristics of PFM

Performance Focused Maintenance

Benefits	Drawbacks
Increased availability and reliability	Requires quality data collection and storage processes
Reduced life-cycle costs	Must be understood and supported by the highest management levels
Data collection fundamental part of the process	
Integrated business and technology approach to maintenance	

Performance Focused Maintenance Case Studies (3)

Case I-15kV Distribution Cables

- Issues:
 - Aging population-(four insulation systems)
 - Inspection program that did not affect failure rates
 - Complicated and time consuming replacement ranking system
 - Ineffective condition assessment tasks
 - Poor asset data
 - 0.4% replacement rate
- Drivers
 - Performance Based Rates
 - High replacement costs
- Key Considerations
 - Design Improvements
 - Mostly in conduit

Equipment Group: Population by Age and Insulation Type

45 - <u>50 years</u>

15-20 years

25-30 years

45 years +

4,900

1,500

30,200

2,400

Identify System Boundaries and Critical Functions

Steps 1-2

PILC

XLPE

HMW-PE

TR-XLPE

#2 AWG HMW vintage cable which failed in Ridgecrest. Water treeing more than 50% through the insulation **#**2 AWG XLPE cable from Fullerton. Water treeing more than 40% through the insulation.

Source: DAE, Improving the performance of underground cable. Sept 14, 2001

Cable Insulation Failure Model

Pre-emptive Replacement Strategy – Age Limit (10% failure)

Case II – SF₆ Breaker Maintenance

Issues:

- Extension of Oil Breaker Maintenance Philosophy
- Declining Reliability
- Increasing Maintenance Costs
- Increased Availability Required
- No CMMS
- Maintenance Behind Schedule

10 Year Results

- Effective Knowledge Transfer
- Improve Data Collection
- Extended Maintenance Intervals (double) with Defendable Basis
- Additional PM Triggers-Age Exploration
- Reduction in Rework Activities-Improved PM Effectiveness
- Increased Availability
- Improved Reliability
- Elimination of PM Backlog

SF₆ PFM Implementation Results

SF₆ Breakers (69% of the total population)

10 Year Analysis Period

More than 10,000 Inspections and Maintenance Tasks

Improved Maintenance Plan Resulted in a Decreased Failure Rate

Improved Effectiveness

Case III-Application of On-Line Monitors

- Issues:
 - Aging Asset Population
 - Recent Cascading Failure
 - Push to Install New Monitoring Technology
 - Poor Experience with Hydrogen Monitors
 - Increased Insurance Rates

Fleet Characteristics

- "Large" Power Transformers
- 220 KV to 115 or 66KV
- 120 to 280 MVA
- Single and Three Phase
- Average Age = 39 Years
- Max Age = 76 Years
- Replacement Costs \$3M to \$4M (on the pad)
- Population = 188

Failure History (population = 188)

Age Distribution

Failures as a Function of Age

Utility Reported Failure and Trouble Distribution

Age Reliability Patterns-Failure Probability

Typical Reliability Predictive Models

Model Comparison Applied to Existing Fleet

Failure Mechanisms

Incipient Failure Model

On-line Monitoring Decision Model

- Failure Model
- Direct Costs
 - Transformer
 - Collateral Damage
 - Fines
- Indirect Costs
 - Commissions and Ratepayers
 - Insurance
 - Stress on other units
 - Supply impacts
- True Risk Reduction
- Fleet Replacement Impacts

Cumulative Cash Flow for Multi-Gas Monitors

Transformer Fleet Risk Exposure Profiles

Extended Useful Life

Conclusions from PFM Approach:

Substantial benefit can be obtained from installation of multi-gas monitors across a large fleet of power transformers

- Improved transformer reliability
- Reduced failure impacts
- Realization of full transformer useful life
- Identification of units in urgent need of repair/replacement.
- Substantial reduction in overall transformer operating risks

Future Trends in Maintenance

- Sharing of Failure and Trouble data
 - Mode and Cause Level
 - Demographics
 - Application
 - Type
 - Population
 - Age models vs. Failure Rate
- Full Asset Utilization
- Risk Reduction
- Key Performance Indicators
 - Asset Family
 - Maintenance Process
 - Life Cycle Costs

Open Discussion and Questions:

Need More Information?

john.skog@mtec2000.com

360.352.9977

2037 Berry St. NE Olympia WA, 98506 USA

