Measurement of Equipment Life and Life Extension, Experience from National Grid

WG A3-06 Tutorial course on Reliability of HV Equipment June 2006, Rio de Janeiro

Francis Waite Asset Management National Grid UK Transmission

Overview

Definition of Equipment Lives
Examples of derivation
Application
Life Extension

Different Types of Equipment Lives

Technical lives

• technical state requiring replacement

Commercial lives

- legal agreement for charging purposes
- typically 40 years but can be negotiated

Financial lives

• period over which assets are financially depreciated over their useful economic life

• Regulatory lives

• used in the regulatory cash flow model

Technical Equipment Life

Technical Equipment Lives

- Represent state requiring replacement in most cases this is not failure (e.g. loss of strength in overhead line conductor)
- Derived using a pragmatic approach which is based on technical requirements using all available information (e.g. asset health, condition, R&D, failures, defects)
- Recognise technical differences in asset families
- Not just one number actually a distribution
- Consistent definition for all assets

Hazard Rate

Technical Asset Life Definitions

Same definition for all assets • Many technical criteria for end of life Based on requiring replacement • Age related replacement (wear-out): • Earliest onset (2.5%) require replacement **Anticipated life (50%) require replacement** Latest onset (97.5%) require replacement Each points rounded to nearest 5 years (indicates best view on accuracy)

Technical Lives - circuit breaker grouping

• Family

- common design groups have common deterioration modes
- Maintenance is defined by family (rather than environment or duty)

• Maintenance history

- Generally common preventative maintenance approach
- Where mid-life refurbishment has been applied recognised in lives

Installed environment

- Certain failure modes independent of environment
- Differences recognised within range rather than sub-dividing categories

• Duty

• common low level duty, except reactive switching devices

Life Limiting Factors - Non-Pressurised Head ABCBs

Equipment Age (Years)							
COMPONENT 0	10 20 30 40 50 60 Beyond			60 Beyond	FAILURE MODE & EFFECT		
(1) Nitrilo Scolo					O-Ring Embrittle Loss of Sealing / failure of air syst	ement (dependent on pressure) Ability leading to increased demands on, and the early	
Small Section					 Moisture Ingress leading to dielectric failure For small section seals, the deterioration rate is faster 		
(2) Nebar / Cork Gaskets / Joints					Loss of elasticity	y giving moisture ingress and/or oil leakage	
(3) Porcelain to Metal Joints -cement					 Frost or Oxide Jacking Loss of Mechanical Strength resulting in fracture and/or destruction of porcelain Chemical ageing of cement weakening flange joints leading to leakage 		
(4) Drive Rods					Age related shearing of Glassfibre Rods and separation of end pieces		
(5) Tensioned components: blast tubes & condensers					 Relaxation of Tension Tubes, Increased Vibration and Loosening of Assemblies 		
(6) Moving assemblies					 Poor settings, los Out of Tolerance 	ss of adjustment } excessive wear and accelerated e Operation } deterioration of moving parts	
(7) Contact wear					 Piston Corrosion devices 	and Wear } bearings, straps and damping	
(8) Grading Capacitors and resistors					Corrosion leading	g to water ingress and/or oil leakage	
(9) Paint and other coatings					• Corrosion, aggravating items (1), (2), (3), (6) & (7)		
(10) Compressors, distribution boards and dryers					Spares and Life Costs (related primarily to usage rather than age)		
(11) High Pressure Air Rings					Fitting Leaks, valves failing		
(12) Steel Housings of drive mechanisms					Corrosion leading to water ingress		
Spares & Technical Knowledge Support	(Supplie Support	r Recycli) (NC	ng & Reverse En GC / In-house sup	port)	Increased inability to support	KEY Expected wear out range Wear out of reconditioned part Expected end of life range Unacceptable operating range	
						— - Anticipated asset life	

Life Limiting Factors - Non-Pressurised Head ABCBs

Technical Equipment Life Distributions

- Provide generic guidance on when assets require replacement
- Many are not symmetric
- Used to forecast:
 - Long term capital requirements
 - Future asset replacement volumes
- Used to understand risks:
 - Uncertainty around long term capital requirements and asset replacement volumes
 - Identify future system risks

Development of equipment technical lives and the use of lives for asset replacement

Life Extension Example - OBR60 Refurbishment

- One of the oldest design 275kV Air Blast Circuit Breakers
- Two known disruptive failure modes a number of disruptive failures in the last 15yrs
 - Condenser tube failure mechanical failure (10m range)
 - Contact block failure catastrophic failure (80m range)
- Risk Management procedures in place
- Specialists employed to advise/condition assess
 - OBR60 Condenser Tubes
 - OBR60 Material Analysis
- Scope of Refurbishment
 - Breaker Refurbishment addressing all seals, gaskets, corrosion
 - Whole Bay refurbishment in line with condition assessment

Summary

- Equipment life set by risk cost performance
- Equipment lives are set and reviewed using:
 - Condition information
 - Forensics
 - Failures
 - Performance
 - R&D
 - Benchmarking and international studies
- Used for the refurbishment and replacement program
- Life can be extended with refurbishment